Do uso militar à imediata reabilitação de paraplégicos!
Gilson Lima – Sociólogo da Ciência. Porto Alegre. Sócio proprietário da empresa NITAS: inovação e tecnologia. Brasil. Pesquisador do Research Committee Logic & Methodology and at the Research Committee of the Clinical Sociology Association International Sociological (ISA).
Quando se trata de andar e correr, os humanos dão um show de eficiência. Nossos tendões e músculos são capazes de armazenar e liberar quando necessário, até 40% da energia que gastamos para andar.
Isso não pode ser feito facilmente por meio dos motores tradicionalmente utilizados nas pernas por caminhada assistida de exoesqueletos ou nas pernas robóticas utilizadas em outros equipamentos.
Imitar bem o andar de um ser humano não é o mesmo que não afetar esse andar. Nossas pesquisas descobriram que, além de interferir um pouco com o balanço normal do corpo, os exoesqueletos fazem com que seu portador consuma 10% a mais de oxigênio do que o andar normal, devido ao esforço para compensar essa interferência. É justamente nesse inconveniente que os pesquisadores vão trabalhar agora.
Geralmente os exoesqueleto necessitam de outros artefatos para a execução da ampliação da força da pessoa, geralmente são mecanismos hidráulicos que auxiliam a mover as pernas – por isso a sua necessidade de energia -, pois o exoesqueleto atua dirigindo uma parte do peso diretamente para o solo.
Até hoje, a maioria dos exoesqueletos utiliza atuadores de alta potência, muito grandes e trata o usuário como um boneco que controla o movimento, mas a maioria das pesquisas atuais com exoesqueleto é apenas para fins militares. O conceito do exoesqueleto militar para fins de guerra visa não a redução ou eliminação de déficits motores para fins de restauração ou reabilitação de lesões ou acidentes sofridos, mas a amplificação da força humana como a da possibilidade de carregar mochilas pesando 30 ou até 90 quilos em longo trajetos tornando-se algo comum e sem esforço para soldados e, até mesmo, para quem gostar de acampamentos selvagens.
Existem modelos militares mais “antigos” desde 2007 e 2008 que não são apenas mecânicos (mas não tanto inflexíveis como o ARGO estudado). Por exemplo, o projeto do Departamento de Robótica da Universidade de Berkeley (Estados Unidos) poderá representar um alívio para as costas desses mochileiros.
Trata-se de um exoesqueleto ergonômico que combina um sistema de controle humano com músculos robóticos. Esse sistema para ser ergonômico se tornou então altamente manobrável e tecnicamente robusto, de forma que o usuário possa andar, agachar-se, dobrar-se e virar-se sem reduções significativas na sua agilidade.
Hoje podemos sonhar com exoesqueletos mais leves e mais flexíveis. O projeto Berkeley Lower Extremity Exoskeleton, um exoesqueleto para membros inferiores, por exemplo, é altamente cibernético que consiste de pernas mecânicas que são rigidamente conectadas às pernas do usuário. O exoesqueleto inclui uma bateria e uma mochila capaz de suportar grandes pesos. Ele possui mais de quarenta sensores incorporados e diversos atuadores hidráulicos que formam uma rede local para o exoesqueleto e funcionam de forma muito parecida com o sistema nervoso humano.
Os sensores, incluindo alguns incorporados na sola dos sapatos, estão constantemente fornecendo informações ao computador central, que pode então ajustar a força liberada pelo equipamento conforme o trabalho que o usuário estiver executando.
O uso militar do exoesqueleto de Berkeley pode ser aplicado também para benefícios de saúde auxiliando médicos, bombeiros e equipes de resgate, que podem ter seu trabalho de remoção de vítimas bastante facilitado, bem como, o equipamento também poderá auxiliar – até mesmo - pessoas com deficiências de musculatura, que poderão voltar a andar normalmente.
Os exoesqueletos que visam à ampliação dos movimentos e da força muscular como o de Berkeley não precisam necessariamente de um joystick ou teclado para dirigir o equipamento. A máquina pode ser projetada de forma que o piloto se torne uma parte simbiótica integrante do exoesqueleto, ampliando a força dos movimentos feitos naturalmente, sem a necessidade de qualquer treinamento. Nos testes, que acessamos do exoesqueleto militar o piloto movimentou-se carregando o próprio exoesqueleto, que pesa 45 quilos, mais uma mochila pesando 32 quilos; a sensação descrita foi de que ele carregava algo como dois quilos.
Outra noção importante aqui é a de exoesqueleto passivo. Passivo por que se trata de um exoesqueleto que facilitam o carregamento de seu peso nas caminhadas de modo a liberar a dependência ativa da força muscular do paciente diante do seu próprio peso existente. Ou seja, o processo é feito como se o exoesqueleto pesasse zero quilograma.
Os engenheiros do Instituto de Tecnologia de Massachusetts em Cambridge, Estados Unidos desde 2007 trabalham num projeto de exoesqueleto militar totalmente passivo que inova em pelo menos dois aspectos essenciais o de Berkeley: além de transferir até 80% do peso de uma mochila que o soldado carrega diretamente para o solo, libera não apenas os músculos, mas também a estrutura óssea da pessoa, por isso ele é considerado virtualmente passivo, não exigindo um gerador de energia ou baterias para auxiliar na passividade.
Assim, um exoesqueleto passivo torna mochilas mais leves e permite carregar peso muito intensos em trajetos longos graças ao desenvolvimento de estruturas mecânicas que facilitam o carregamento de peso sem depender da sua própria força muscular.
A pessoa que "veste" esse exoesqueleto coloca seus pés sobre botas ligadas a uma série de tubos e articulações que vão até a base da mochila. Com isso, o peso da mochila vai para as botas e não para as pernas e os pés do usuário.
Imaginemos os humanos como os artrópodes, os humanos tivessem uma estrutura totalmente passiva para resguardar os seus corpos. Esse é o conceito.
Uma versão de exoesqueleto militar americana mais recente deste projeto tem uma versão que não é só mecânica e têm transistores, 40 sensores, atuadores hidráulicos e baterias de lítio que formam uma rede local que consome muita energia. Ele foi projetado exclusivamente para o carregamento de mochilas ou outros tipos de cargas apoiadas nas costas. Os testes, feitos com uma mochila de 32 quilogramas, demonstraram que quase 26 quilogramas deixaram de impactar o usuário, apoiando-se diretamente no solo.
O conceito está virando realidade para os soldados e quem desenvolve a tecnologia efetivamente militar é a empresa de armamento Lockheed, que já testa em algumas bases dos Estados Unidos.
Um outro projeto de exoesqueleto militar da empresa e os designers do Berkeley Bionics of California também é digno de nota. Trata-se do ‘Human Universal Load Carrier’, ou apenas “HULC”, os combatentes conseguem carregar mais de 90 quilos fazendo um esforço mínimo nos músculos. A ferramenta também tem como missão poupar a condição física de seres humanos. No campo de guerra, os soldados poderiam utilizar o artefato articulado para andar a 11,2 km/h por um longo período sem sentir cansaço muscular – e com a possibilidade de chegar até 16 km/h. Não vimos nenhum teste ou protocolo de coleta de oxigênio com exoesqueleto publicada, mas os autores afirmam que a ferramenta ajuda a diminuir o consumo de oxigênio (de 5 % a 10%).
Outra característica importante é a portabilidade do exoesqueleto. Algumas tecnologias de locomoção para humanos já foram desenvolvidas, inclusive, para fins militares, mas esta parece ser a mais próxima de se tornar um produto final, principalmente, pela facilidade de transporte, montagem e capacidade de compactação da peça. Em trinta segundos, vimos algumas demonstrações, o usuário conseguia ter seu “segundo esqueleto” removido e reduzido para uma forma portátil.
O peso do exoesqueleto que testamos o Argo é de 5, 7 quilograma, muito inferior da média dos exoesqueletos militares que pensam cerca de aproximadamente 24 quilos no módulo básico: tronco e pernas. Isto, será alterado por que os militares estudam formas de incrementar a tecnologia com ombreiras (para carregar objetos ainda mais pesados), sensores, sistemas de aquecimento e arrefecimento.
Um caminho para a melhoria da performance dos exoesqueleto é o do estudos de novas molas que podem dar um novo impulso as pernas robóticas.
Novas molas podem tornar possível acumular energia em um passo e liberá-la para impulsionar o próximo passo. As molas permitem também dar aos exoesqueletos o gingado característico do andar humano, que reflete bem o aproveitamento que fazemos da energia. Pesquisadores criaram uma perna robótica (ao lado) que eles batizaram de perna ECD (Electric Cable Differential). No protótipo, não existem engrenagens entre os motores e as demais peças, somente cabos de aço. As peças estruturais da própria perna são construídas de uma fibra de vidro especial, com um comportamento semelhante ao dos arcos de flecha. É uma abordagem não-tradicional em robótica.
Também, os tipos de atuadores são importantes. O design tradicional dos exoesqueletos cibernéticos utilizam motores, mas é teoricamente possível criar-se um andar gingado sem eles, mas o exoesqueleto ficará imenso e consumirá uma quantidade enorme de energia. Os atuadores pneumáticos, por sua vez, têm um funcionamento maleável como as molas, mas são muito mais difíceis de se controlar com precisão.
Uma outra abordagem normalmente utilizada emprega equipamentos hidráulicos, que também não são exatamente a melhor escolha quando se deseja construir um equipamento que seja leve e rápido. Foi o que vimos no experimento do Argus que utiliza essa solução.
Também processos de molas colocadas na altura dos tornozelos e da cintura, além de um sistema de amortecimento junto ao joelho, permitem que o equipamento imite bem o andar normal de um ser humano, necessitando para seu funcionamento de uma fonte de energia de apenas 1 watt de potência. Existem exoesqueletos capazes de permitir o carregamento de pesos muito maiores, mas exigindo até 3.000 watts de potência, supridas por um gerador acionado por um pequeno motor a gasolina.
Imitar bem o andar de um ser humano não é o mesmo que não afetar esse andar. Nossas pesquisas descobriram que, além de interferir um pouco com o balanço normal do corpo, os exoesqueletos fazem com que seu portador consuma 10% a mais de oxigênio do que o andar normal, devido ao esforço para compensar essa interferência. É justamente nesse inconveniente que os pesquisadores vão trabalhar agora.
A alimentação da máquina móvel geralmente é por baterias de lítio, mas há uma versão para longas jornadas, que possuem um gerador JP8 com capacidade de duração de 3 dias (8 horas de caminhadas diárias por volta de 4,8 km/h).
Para um brainstorm é preciso considerar também as poucas inciativas da indústria de produzir em escala exoesqueleto para fins de reabilitação.
A Honda tem investido em exoesqueleto para reabilitação. A Honda adotou um enfoque diferente, acreditando que, para auxiliar uma pessoa simplesmente a caminhar mais facilmente, é necessário um aparato muito mais simples. O objetivo do equipamento é auxiliar pessoas idosas e pacientes em recuperação a caminhar sem esforço excessivo e apresentou recentemente no Japão uma versão de dispositivo de pernas robóticas destinada a dar mais mobilidade a idosos e evitar o cansaço de trabalhadores que precisam passar muito tempo de pé.
(FOTO: Mini-exoesquelto da Honda que auxilia no andar).
Estamos pensando num micro dispositivo que podemos testar para um novo protótipo do ARGO do caso estudado. A Honda também apresentou ano passado um protótipo de mini-exoesqueleto que auxilia a andar também. O objetivo do equipamento é auxiliar pessoas idosas e pacientes em recuperação a caminhar sem esforço excessivo. Ele utiliza motores planos sem escovas que permite a redução das dimensões do exoesqueleto para apenas 2,8 kg. Também tem uma bateria de íons de lítio de 22 V e 1 Ah que permite o funcionamento ininterrupto do exoesqueleto por 2 horas, com o usuário andando a uma velocidade de 4,5 km/h. Ou seja, o conceito de exoesqueleto está agora sendo utilizado na reabilitação. O equipamento está sendo desenvolvido desde 1999, mas embora ainda não esteja disponível comercialmente.
Outro produto da Honda é um conceito de exoesqueleto dirigido para aliviar o peso de pessoas idosas ficarem de pé. Trata-se de um conceito de sentar sobre as pernas de pé. Um equipamento tem um assento, parecido com o selim de uma bicicleta. As pernas robóticas propriamente ditas ficam entre as pernas do usuário. Fazendo as vezes de pés, as pernas robóticas vêm equipadas com um par de sapatos, integrados ao equipamento.
Segundo a empresa, o novo equipamento de assistência ao caminhar, integrado ao seu mecanismo de suporte do corpo, reduz a carga sobre os músculos das pernas e as juntas.
Um outro exemplo interessante e inteligente é o das pernas robóticas para o dia-a-dia.
(FOTO: Pernas robóticas dão mobilidade e aliviam cansaço de trabalhadores e idosos).
Um mecanismo inteligente dirige a força auxiliar do equipamento para o centro de gravidade da pessoa e controla essa força de forma totalmente sincronizada com os movimentos das pernas do usuário. Isso torna possível o uso das pernas robóticas em todas as atividades do dia-a-dia, permitindo, por exemplo, que a pessoa se agache e levante ou suba escadas, de forma totalmente natural, sem a necessidade de um controle explícito sobre o equipamento.
Pensamos que esse dispositivo é um achado importante da Honda para fins de exoesqueleto. Todos que atuam em reabilitação de um modo ou de outro tem a devida consciência da importância dos processos que envolvem o centro de gravidade para apoio explícito e implícito dos membros inferiores.
Um destaque final de exoesqueleto é o do airbag para idosos criados pela Empresa Japonesa Mitsuya Uchida. Trata-se de um exoesqueleto que visa previne que idosos se machuquem ao cair no chão. O equipamento, que é amarrado em volta do corpo, infla em 0,1 segundo quando detecta que está acelerando em direção ao chão. Estranhamente, um bolsão fica atrás da cabeça e outro atrás do quadril. Não há proteção contra quedas frontais.
O produto é feito para amortecer uma queda usando então as duas bolsas de ar separadas: uma atrás da cabeça e outra em volta dos quadris. Também o pescoço é protegido colocando a cabeça em posição que evite o risco de danos. O produto foi criado principalmente para idosos que sofrem de epilepsia.
O Japão tem uma grande população de idosos, com até 30 milhões de pessoas acima de 65 anos e a enorme população no Japão clamou para que alguns fabricantes os auxiliassem.
Com essa exceção e a da Honda, ainda não encontramos pesquisadores de reabilitação que já planejam fabricar seus exoesqueletos para venda, embora afirmem que a tecnologia possa vir a ser utilizada por alguma empresa interessada. Eles, em geral, encontram em fase de pesquisa que visa a melhoria continua dos próprios produtos com vistas à sua utilização como um equipamento futuro de uma próxima geração.
Quando se trata de andar e correr, os humanos dão um show de eficiência e deixam os robôs – por exemplo- a anos-luz de distância. Nossos tendões e músculos são capazes de armazenar e liberar quando necessário, até 40% da energia que gastamos para andar.
Isso não pode ser feito facilmente por meio dos motores tradicionalmente utilizados nas pernas dos próprios robôs e nas pernas robóticas utilizadas em exoesqueletos e em outros equipamentos para caminhada assistida. Hoje podemos sonhar com exoesqueletos mais leves e mais flexíveis.
Até hoje, a maioria dos exoesqueletos utiliza atuadores de alta potência, muito grandes, e trata o usuário como um boneco que controla o movimento de um robô, mas como disse já algum tempo um dos maiores especialistas nesse campo: “Eu acredito que isto se deve em grande medida ao fato de que nós ainda não entendemos totalmente a dinâmica do andar e do correr. Quanto tivermos entendido, os exoesqueletos poderão ser muito menores, menos aparentes e mais úteis," (Jonathan Hurst, da Universidade Carnegie Mellon, 2008).
Bibliografia:
https://rewalk.com/
CITI (2011) “História Da Robótica”.
www.citi.pt/educacao_final/trab_final_inteligencia_artificial/historia_da_robotica.html.
Acesso em 19/08/2011.
CONOR James Walsh, et all. A Quasi-Passive Leg Exoskeleton for Load-Carrying Augmentation. Department of Mechanical Engineering, 2007. MIT, 77 Massachusetts Avenue, CAMBRIDGE, MA 02139, USA †MIT Media Lab, 20 Ames Street, In:
http://web.mit.edu/walshcj/www/publications/exoHUMANOIDS2007.pdf Acesso em 19/08/2011.
DEMEC (UFMG) (2011). “A História da Robótica (Automação)”.
ftp://novell.demec.ufmg.br/lrss/Robotica_Graduacao_Pos/Aula1A_historico.pdf.
Acesso em 19/08/2011.
EMMER, G (2011) “EXOSKELETON Information about the coming revolution of
Exoskeleton Suits for wheelchair users”.
http://www.exoskeletonsuit.com/Introduction.html
Acesso em 19/08/2011.
EZABELLA, F. Máquinas fazem paraplégicos andarem. Ciência. São Paulo, 12 dez. 2010.
Folha de S.Paulo. p. C14.
HOWSTUFFWORKS Brasil (2011) “Como funciona o ASIMO”. http://informatica.hsw.uol.com.br/asimo.htm Acesso em 19/08/2011.
KORCKIEVICZ B. (2010) “ReWalk: Tecnologia para deficientes”.
http://www.nerdrops.com/noticias/tecnologia-noticias/rewalk-tecnologia-paradeficientes.
Acesso em 19/08/2011.
JUNIOR, José de Moura, et al. Robótica na Reabilitação de Pessoas com limitações. Universidade Paranaense (Unipar). http://ftp.unipar.br/~seinpar/artigos/Junior-Moura.pdf
LYN S. Lippert. Clinical Kinesiology and Anatomy. MS, PT - FOURTH EDITION, 2010.
KAZEROONI, H. et al. On the Control of the Berkeley Lower Extremity Exoskeleton (BLEEX).
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1618670 Acesso em 19/08/2011.
IEEE International Conference on. Print ISBN: 0-7803-8914-X , 2005.
LIPPERT, Lynn. Clinical Kinesiology for Physical Therapist Assistants.
http://www.amazon.com/Clinical-Kinesiology-Physical-Therapist-Assistants/dp/0803612435 Acesso em 19/08/2011.
LIMA, Gilson. Relatório de caso: exoesqueleto aplicado ao suporte clínico e físico de reabilitação de paciente etraplegico, 2001. Nitas, Centro Universitário Metodista IPA.
LIMA, Gilson. Nômades de Pedra. Porto Alegre: Escritos-Tomo Editorial, 2005.
LOKHEEDMARTIN. (2011) “HULC”.
http://www.lockheedmartin.com/products/hulc/index.html . Acesso em 19/08/2011.
ORGANIZAÇÃO MUNDIAL DA SAÚDE (2011) “Informe mundial sobre la discapacidad”.
http://www.who.int/disabilities/world_report/2011/es/index.html . Acesso em 19/08/2011.
PARK A. (2011) “eLegs Exoskeleton”. http://www.time.com/time/specials/packages/article/0,28804,2029497_2030618_2029794,00.htm
Acesso em 19/08/2011.
REWALK (2011) “ReWalk-I Now Available”. http://rewalk.us/ Acesso em 19/08/2011.
REXBIONICS (2011) “What is Rex?” http://www.rexbionics.co.nz/What-is-Rex.aspx.
Acesso em 19/08/2011.
ROBOTICALIVRE (2011) “Robótica Livre – A História da Robótica”. http://www.roboticalivre.com/introduc-o-e-historia-da-robotica-3.html Acesso em 19/08/2011.